Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Vet Microbiol ; 264: 109299, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1559479

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an emerging porcine enteric coronavirus that causes severe diarrhea in piglets and results in serious economic losses. There are no effective vaccines and antiviral drugs to prevent and treat PDCoV infection currently. Griffithsin (GRFT) is a lectin with potent antiviral activity against enveloped viruses because of its ability to specifically bind N-linked high-mannose oligosaccharides. GRFT has been reported to possess antiviral activity against severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and porcine epidemic diarrhea virus (PEDV). Here, we first confirmed the antiviral activity of GRFT against PDCoV in vitro. The infected cells (%) and virus titers were significantly decreased at concentration 1 µg/mL or above of GRFT. Time-course experiments revealed that GRFT inhibits PDCoV infection at the adsorption and penetration step. GRFT binding to PDCoV spike (S) protein on the surface wraps the virus and blocks its entry. The outstanding antiviral potency indicates that GRFT has the potential value as a candidate drug for the prevention and treatment of PDCoV infection.


Subject(s)
Deltacoronavirus , Plant Lectins , Animals , Antiviral Agents/pharmacology , Cell Culture Techniques/veterinary , Coronavirus Infections/drug therapy , Coronavirus Infections/veterinary , Deltacoronavirus/drug effects , Plant Lectins/pharmacology , Swine , Swine Diseases/drug therapy
2.
Viruses ; 13(12)2021 12 06.
Article in English | MEDLINE | ID: covidwho-1555020

ABSTRACT

Porcine deltacoronavirus (PDCoV) is a novel coronavirus that causes diarrhea in nursing piglets. Studies showed that PDCoV uses porcine aminopeptidase N (pAPN) as an entry receptor, but the infection of pAPN-knockout cells or pigs with PDCoV revealed that pAPN might be not a critical functional receptor, implying there exists an unidentified receptor involved in PDCoV infection. Herein, we report that sialic acid (SA) can act as an attachment receptor for PDCoV invasion and facilitate its infection. We first demonstrated that the carbohydrates destroyed on the cell membrane using NaIO4 can alleviate the susceptibility of cells to PDCoV. Further study showed that the removal of SA, a typical cell-surface carbohydrate, could influence the PDCoV infectivity to the cells significantly, suggesting that SA was involved in the infection. The results of plaque assay and Western blotting revealed that SA promoted PDCoV infection by increasing the number of viruses binding to SA on the cell surface during the adsorption phase, which was also confirmed by atomic force microscopy at the microscopic level. In in vivo experiments, we found that the distribution levels of PDCoV and SA were closely relevant in the swine intestine, which contains huge amount of trypsin. We further confirmed that SA-binding capacity to PDCoV is related to the pre-treatment of PDCoV with trypsin. In conclusion, SA is a novel attachment receptor for PDCoV infection to enhance its attachment to cells, which is dependent on the pre-treatment of trypsin on PDCoV. This study paves the way for dissecting the mechanisms of PDCoV-host interactions and provides new strategies to control PDCoV infection.


Subject(s)
Deltacoronavirus/physiology , N-Acetylneuraminic Acid/metabolism , Receptors, Virus/metabolism , Trypsin/metabolism , Virus Attachment , Animals , Carbohydrates , Cell Line , Cell Membrane/metabolism , Cell Membrane/virology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Deltacoronavirus/drug effects , Host-Pathogen Interactions , Intestines/metabolism , Intestines/virology , Periodic Acid/pharmacology , Swine , Swine Diseases/virology , Trypsin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL